Lower volume growth and total σk-scalar curvature estimates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

σk-SCALAR CURVATURE AND EIGENVALUES OF THE DIRAC OPERATOR

On a 4-dimensional closed spin manifold (M, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows λ 4 ≥ 32 3 R M4 σ2(g)dvol(g) vol(M, g) . Equality implies that (M, g) is a round sphere and the corresponding eigenspinors are Killing spinors. Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday

متن کامل

Lower Volume Growth Estimates for Self-shrinkers of Mean Curvature Flow

We obtain a Calabi-Yau type volume growth estimates for complete noncompact self-shrinkers of the mean curvature flow, more precisely, every complete noncompact properly immersed self-shrinker has at least linear volume growth.

متن کامل

Scalar Curvature Estimates by Parallel Alternating Torsion

We generalize Llarull’s scalar curvature comparison to Riemannian manifolds admitting metric connections with parallel and alternating torsion and having a nonnegative curvature operator on ΛTM . As a byproduct, we show that Euler number and signature of such manifolds are determined by their global holonomy representation. Our result holds in particular for all quotients of compact Lie groups ...

متن کامل

Curvature Estimates in Asymptotically Flat Manifolds of Positive Scalar Curvature

Suppose that (Mn, g) is an asymptotically flat Riemannian spin manifold of positive scalar curvature. The positive mass theorem [1, 2, 3] states that the total mass of the manifold is always positive, and is zero if and only if the manifold is flat. This result suggests that there should be an inequality which bounds the Riemann tensor in terms of the total mass and implies that curvature must ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2015

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2015.08.003